

A3 Edge for oblique and dense DSM – practical case study

Use of oblique images

O Emergency situations

- Damage estimation fire, flood, inundation, storm, landslide, big accidents, act of terror etc.
- Management in emergency situation EMERCOM (Emergency Control Ministry), fire-brigade, first aid, army

• Large industrial objects

- Planning, management and documentation sea ports, airports, railway stations, large construction cites, special destination objects etc
- Planning, management and documentation of linear objects roads, power lines, pipe lines etc.

• Town planning

- Town planning, landscape design, architecture
- City building fund documentation
- Illegal housing

Use of oblique images

O Cultural heritage

• Documentation and monitoring of historical buildings and installations

Real estate assessment

 Assessment, showing and inspection of real estate – insurance agencies, real estate agencies

O Miscellaneous

- Municipal services, tax inspection (HM Revenue and Customs (HMRC), police, police patrol, fire brigade, ambulance etc
- Mass media
- Web-sites (Google, Bing, Yandex,...)
- O Tourism
- 3D City models etc.

Use of 3D City models

- Town planning
- Military applications
- Emergency situations
- Security services
- Documentation of historical and cultural heritage objects
- GIS
- Earth work calculations mines, quarries, roads etc.
- Forestry
- Infrastructures mapping power lines, pipe lines etc
- Web-sites and search engines
- Tourism

- A3 Edge aerial camera (RGB+NIR) for vertical and oblique images
- MIST-IR aerial camera (MWIR) for vertical and oblique images
- LightSpeed processing system for simultaneous adjustment of hundreds of thousands of vertical and oblique images, DSM creation and orthophoto production
- Oblivision 3rd party software to work with oblique images
- Acute 3D 3rd party software to build 3D City models

A3 Edge & MIST-IR aerial camera

Camera	A3 Edge	MIST-IR
Focal length (mm)	300	300
GSD from 1,000 m	2.5 cm	5.0 cm
Max FOV (°)	110	80
CCD pixel size (µ)	7.4	15.0
CCD size (pix)	4,864 x 3,232	1,280 x 1,024
Maximal footprint (pix)	75,000 x 9,600	27,600 x 1,280
Max image size (Mpix)	700	34
Wave length	RGB / RGB+NIR	MWIR
Color Depth (bit)	12	12
Vertical & Oblique	Yes	Yes
Motion compensation	FMC, RMC, VC	FMC, RMC, VC
Weight (kg)	42	11
Camera dimensions (cm)	50*60*60	24*34*39
Operation temperature (°C)	-15° - +55°	-15° - +55°

A3 Edge aerial survey and mapping system

Aerial survey camera

LightSpeed Photogrammetric Suite

Ground processing system

A3 Edge images

Vertical aerial survey scheme

Digital mapping systems

Two-side oblique aerial survey scheme

One-side oblique aerial survey scheme

A3 Edge installation

One A3 Edge for oblique imagery (criss-cross flight)

Two A3 Edge for oblique imagery (parallel flight)

DSM flight scenarios with one A3 Edge

Aerial survey area for oblique

Oblique or 3D City projects with one A3 Edge

GSD (cm)	5	7.5	10
Altitude (feet, AGL)	6,650	8,300	11,000
Ground speed (knot)	120	180	240
Forward overlap (%)	30%	30%	30%
Side overlap (%)	82%	82%	82%
Side oblique overlap (%)	30%	30%	30%
Maximal oblique angle (deg)	54°	54°	54°
Minimal oblique angle (deg)	34°	34°	34°
Flight lines distance (m)	1,000	1,300	1,700
Aerial survey productivity (oblique coverage, sq. km/hour)	463	869	1,544
Survey area (10km x 10km)	100	100	100
Number of flight lines (criss-cross)	22	18	14
Flight time (criss-cross flight, including turns, hour)	2.66	1.87	1.31

Oblique or 3D City projects with two A3 Edge

GSD (cm)	5	7.5	10
Altitude (feet, AGL)	6,650	8,300	11,000
Ground speed (knot)	210	260	350
Forward overlap (%)	30%	30%	30%
Side overlap (%)	82%	82%	82%
Side oblique overlap (%)	30%	30%	30%
Maximal oblique angle (deg)	54°	54°	54°
Minimal oblique angle (deg)	34°	34°	34°
Flight lines distance (m)	750	920	1,200
Aerial survey productivity (oblique coverage, sq. km/hour)	573	887	1,592
Survey area (10km x 10km)	100	100	100
Number of flight lines (criss-cross)	15	12	9
Flight time (parallel flight, including turns, hour)	1.55	1.17	0.81

DSM/DSM based TrueOrtho with one A3 Edge

GSD (cm)	5	7.5	10
Altitude (feet, AGL)	6,650	8,300	11,000
Ground speed (knot)	140	180	240
Forward overlap (%)	30%	30%	30%
Side overlap (%)	83%	83%	83%
Orthophoto angle (°)	30°	30°	30°
FOV (deg)	109°	109°	109°
Flight lines distance (m)	978	1,222	1,629
Aerial survey productivity (ortho coverage, sq. km/hour)	253	407	724
Survey area (10km x 10km)	100	100	100
Number of flight lines (parallel flight)	11	9	7
Flight time (parallel flight, including turns, hour)	1.26	0.94	0.66

St. Isaac's Cathedral St. Petersburg

THE REAL PROPERTY

-

1940 P

Altitude (m)	4,000
GSD (cm)	10
Image type	Vertical & Oblique
Color	RGB

Peter and Pavel Fortress

TATA A ANT

St. Petersburg

Altitude (m)	4,000
GSD (cm)	10
Image type	Vertical & Oblique
Color	RGB

Valparaiso, DSM=10 cm DSM based True Ortho

Altitude	3,400 m
GSD	10 cm
Area	140 sq. km
DSM density	100 p/sq.m
Points	14.4 milliard
Processing time	81 h
DSM net (15 cm)	29 h
Computer	GPU Nvidia GTX680
	24 cores * 8GB RAM
Parallelization	Νο

Valparaiso DSM = 25 cm

Altitude	3,450 m	
GSD	10 cm	
DSM density	16 p/sq.m	
Forward overlap	55%	
Side overlap	56%	
Max. oblique angle	50 °	
Intersection angle	17° - 45°	
Number of pairs	10	
per point	10	2.01
Flight type	Parallel	

Canberra DSM = 25 cm

Altitude	3,120 m
GSD	8 cm
DSM density	16 p/sq.m
Forward overlap	55%
Side overlap	80%
Max. oblique angle	50 °
Intersection angle	15° - 45°
Number of pairs	0
per point	0
Flight type	Parallel

Canberra, DSM=25 cm DSM based True Ortho

A3 Edge oblique images with Oblivision

3D model with A3 Edge and Acute3D

Shateau Lapallise, France

XXO VISIONMAP XOO Digital mapping systems

Disclaimer

The information contained in this publication is provided for general guidance only and forms no part of the contract and shall not in any circumstances constitute a trade description. The Company reserves the right to change or amend specification without prior notice.

