A3 Edge for oblique and dense DSM practical case study

## Use of oblique images

## O Emergency situations

- Damage estimation - fire, flood, inundation, storm, landslide, big accidents, act of terror etc.
- Management in emergency situation - EMERCOM (Emergency Control Ministry), fire-brigade, first aid, army


## O Large industrial objects

- Planning, management and documentation - sea ports, airports, railway stations, large construction cites, special destination objects etc
- Planning, management and documentation of linear objects - roads, power lines, pipe lines etc.


## O Town planning

- Town planning, landscape design, architecture
- City building fund documentation
- Illegal housing


## Use of oblique images

## O Cultural heritage

O Documentation and monitoring of historical buildings and installations
O Real estate assessment

- Assessment, showing and inspection of real estate - insurance agencies, real estate agencies

O Miscellaneous

- Municipal services, tax inspection (HM Revenue and Customs (HMRC), police, police patrol, fire brigade, ambulance etc
- Mass media
- Web-sites (Google, Bing, Yandex,...)
- Tourism
- 3D City models etc.


## Use of 3D City models

- Town planning
- Military applications
- Emergency situations
- Security services
- Documentation of historical and cultural heritage objects
- GIS
- Earth work calculations - mines, quarries, roads etc.
- Forestry
- Infrastructures mapping - power lines, pipe lines etc
- Web-sites and search engines
- Tourism


## VisionMap and oblique images

O A3 Edge - aerial camera (RGB+NIR) for vertical and oblique images
O MIST-IR - aerial camera (MWIR) for vertical and oblique images
O LightSpeed - processing system for simultaneous adjustment of hundreds of thousands of vertical and oblique images, DSM creation and orthophoto production

O Oblivision - $3^{\text {rd }}$ party software to work with oblique images

- Acute 3D - $3^{\text {rd }}$ party software to build 3D City models


## A3 Edge \& MIST-IR aerial camera



| Camera | A3 Edge | MIST-IR |
| :--- | :---: | :---: |
| Focal length $(\mathrm{mm})$ | 300 | 300 |
| GSD from $1,000 \mathrm{~m}$ | 2.5 cm | 5.0 cm |
| Max FOV $\left(^{\circ}\right)$ | 110 | 80 |
| CCD pixel size $(\mu)$ | 7.4 | 15.0 |
| CCD size (pix) | $4,864 \times 3,232$ | $1,280 \times 1,024$ |
| Maximal footprint (pix) | $75,000 \times 9,600$ | $27,600 \times 1,280$ |
| Max image size (Mpix) | 700 | 34 |
| Wave length | RGB / RGB+NIR | MWIR |
| Color Depth (bit) | 12 | 12 |
| Vertical \& Oblique | Yes | Yes |
| Motion compensation | FMC, RMC, VC | FMC, RMC, VC |
| Weight (kg) | 42 | 11 |
| Camera dimensions (cm) | $50^{*} 60^{*} 60$ | $24^{* 3} 34^{* 39}$ |
| Operation temperature $\left({ }^{\circ} \mathrm{C}\right)$ | $-15^{\circ}-+55^{\circ}$ | $-15^{\circ}-+55^{\circ}$ |

## A3 Edge aerial survey and mapping system



Aerial survey camera


LightSpeed
Photogrammetric Suite


Ground processing system

## A3 Edge images

Angles for the vertical and oblique parts are defined at the flight planning stage depending on the final mapping products requirements such as:


## Vertical aerial survey scheme

## FOV - field of view

$\mathbf{2 a}$ - permissible orthophoto angle across flight line. It corresponds to Wo distance on the ground. Only this part of the images is used for orthophoto production
D - distance between flight lines
Q - side overlap


## VisionMap Proprietary

## Two-side oblique aerial survey scheme

$\boldsymbol{\beta m a x}$ - oblique max. angle;
$\boldsymbol{\beta m i n}$ - oblique min. angle;
Q2 - side oblique overlap;
Rmax - max. oblique footprint;
Rmin - min. oblique footprint;
Lmax - max. oblique distance;
Lmin - min. oblique distance;
W2o - oblique coverage width;
Do - distance between flight lines;


Lmax

## One-side oblique aerial survey scheme

$\boldsymbol{\beta m a x}$ - oblique max. angle;
$\boldsymbol{\beta m i n}$ - oblique min. angle;
Q2 - side oblique overlap;
Rmax - max. oblique footprint;
Rmin - min. oblique footprint;
Lmax - max. oblique distance;
Lmin - min. oblique distance;
W2o - oblique coverage width;
Do - distance between flight lines;
s;


## A3 Edge installation

Flight direction


Flight direction


Flight direction


## One A3 Edge for oblique imagery (criss-cross flight)




## Two A3 Edge for oblique imagery (parallel flight)




## DSM flight scenarios with one A3 Edge

DSM with façades for 3D City


DSM for DSM/DTM/Ortho or DSM based TrueOrtho


## Aerial survey area for oblique

Mapping area $-5 \mathrm{~km} \times 5 \mathrm{~km}$
Aerial survey area $-7.5 \mathrm{~km} \times 7.5 \mathrm{~km}$


## Oblique or 3D City projects with one A3 Edge

| GSD (cm) | $\mathbf{5}$ | $\mathbf{7 . 5}$ | $\mathbf{1 0}$ |
| :--- | :---: | :---: | :---: |
| Altitude (feet, AGL) | 6,650 | 8,300 | 11,000 |
| Ground speed (knot) | 120 | 180 | 240 |
| Forward overlap (\%) | $30 \%$ | $30 \%$ | $30 \%$ |
| Side overlap (\%) | $82 \%$ | $82 \%$ | $82 \%$ |
| Side oblique overlap (\%) | $30 \%$ | $30 \%$ | $30 \%$ |
| Maximal oblique angle (deg) | $54^{\circ}$ | $54^{\circ}$ | $54^{\circ}$ |
| Minimal oblique angle (deg) | $34^{\circ}$ | $34^{\circ}$ | $34^{\circ}$ |
| Flight lines distance (m) | 1,000 | 1,300 | 1,700 |
| Aerial survey productivity (oblique coverage, <br> sq. km/hour) | 463 | 869 | 1,544 |
| Survey area (10km x 10km) | 100 | 100 | 100 |
| Number of flight lines (criss-cross) | 22 | 18 | 14 |
| Flight time (criss-cross flight, including turns, hour) | 2.66 | 1.87 | 1.31 |

## Oblique or 3D City projects with two A3 Edge

| GSD (cm) | $\mathbf{5}$ | $\mathbf{7 . 5}$ | $\mathbf{1 0}$ |
| :--- | :---: | :---: | :---: |
| Altitude (feet, AGL) | 6,650 | 8,300 | 11,000 |
| Ground speed (knot) | 210 | 260 | 350 |
| Forward overlap (\%) | $30 \%$ | $30 \%$ | $30 \%$ |
| Side overlap (\%) | $82 \%$ | $82 \%$ | $82 \%$ |
| Side oblique overlap (\%) | $30 \%$ | $30 \%$ | $30 \%$ |
| Maximal oblique angle (deg) | $54^{\circ}$ | $54^{\circ}$ | $54^{\circ}$ |
| Minimal oblique angle (deg) | $34^{\circ}$ | $34^{\circ}$ | $34^{\circ}$ |
| Flight lines distance (m) | 750 | 920 | 1,200 |
| Aerial survey productivity (oblique coverage, <br> sq. km/hour) | 573 | 887 | 1,592 |
| Survey area (10km x 10km) | 100 | 100 | 100 |
| Number of flight lines (criss-cross) | 15 | 12 | 9 |
| Flight time (parallel flight, including turns, hour) | 1.55 | 1.17 | 0.81 |

## DSM/DSM based TrueOrtho with one A3 Edge

| GSD (cm) | $\mathbf{5}$ | $\mathbf{7 . 5}$ | $\mathbf{1 0}$ |
| :--- | :---: | :---: | :---: |
| Altitude (feet, AGL) | 6,650 | 8,300 | 11,000 |
| Ground speed (knot) | 140 | 180 | 240 |
| Forward overlap (\%) | $30 \%$ | $30 \%$ | $30 \%$ |
| Side overlap (\%) | $83 \%$ | $83 \%$ | $83 \%$ |
| Orthophoto angle ( ${ }^{\circ}$ ) | $30^{\circ}$ | $30^{\circ}$ | $30^{\circ}$ |
| FOV (deg) | $109^{\circ}$ | $109^{\circ}$ | $109^{\circ}$ |
| Flight lines distance (m) | 978 | 1,222 | 1,629 |
| Aerial survey productivity (ortho coverage, <br> sq. km/hour) | 253 | 407 | 724 |
| Survey area (10km x 10km) | 100 | 100 | $\mathbf{1 0 0}$ |
| Number of flight lines (parallel flight) | 11 | 9 | 7 |
| Flight time (parallel flight, including turns, hour) | 1.26 | 0.94 | 0.66 |


Peter and Pavel Fortress
St. Petersburg
Altitude (m) 4,000
GSD (cm)
Image type

## Color $\quad$ RGB




Valparaiso


# Valparaiso, DSM=10 cm <br> DSM based True Ortho 

| Altitude | $3,400 \mathrm{~m}$ |
| :--- | :---: |
| GSD | 10 cm |
| Area | $140 \mathrm{sq} . \mathrm{km}$ |
| DSM density | $100 \mathrm{p} / \mathrm{sq} \cdot \mathrm{m}$ |
| Points | 14.4 milliard |
| Processing time | 81 h |
| DSM net $(15 \mathrm{~cm})$ | 29 h |

## Computer

GPU Nvidia GTX680 24 cores * 8GB RAM

## Parallelization

## No






## A3 Edge oblique images with Oblivision



3D model with A3 Edge and Acute3D


Shateau Lapallise, France

## Thank You

# $00 \times$ $\times \times 00$ $\times 00$ <br> VISIONMAP <br> Digital mapping systems 

## Disclaimer

The information contained in this publication is provided for general guidance only and forms no part of the contract and shall not in any circumstances constitute a trade description. The Company reserves the right to change or amend specification without prior notice.

